1
0
mirror of https://github.com/kennycason/kumo synced 2025-04-06 10:18:49 -04:00
kumo/README.md
2015-08-03 18:34:27 -05:00

10 KiB

Kumo

Kumo's goal is to create a powerful and user friendly Word Cloud API in Java. Kumo directly generates an image file without the need to create an applet as many other libraries do.

Please feel free to jump in and help improve Kumo! There are many places for performance optimization in Kumo!

Current Features

  • Draw Rectangle, Circle or Image Overlay word clouds. Image Overlay will draw words over all non-transparent pixels.
  • Linear, Square-Root Font Scalars. Fully extendible.
  • Variable Font Sizes.
  • Word Rotation. Just provide a Start Angle, End Angle, and number of slices.
  • Custom BackGround Color. Fully customizable BackGrounds coming soon.
  • Word Padding.
  • Load Custom Color Pallettes.
  • Two Modes that of Colision and Padding: PIXEL_PERFECT and RECTANGLE.
  • Polar Word Clouds. Draw two opposing word clouds in one image to easily compare/contrast date sets.
  • Layered Word Clouds. Overlay multiple word clouds.
  • WhiteSpace and Chinese Word Tokenizer. Fully extendible.
  • Frequency Analyzer to tokenize, filter and compute word counts.

Available from Maven Central

<dependency>
    <groupId>com.kennycason</groupId>
    <artifactId>kumo</artifactId>
    <version>1.1</version>
</dependency>

Screenshots

Examples

Example to generate a Word Cloud on top of an image.

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
frequencyAnalyzer.setWordFrequencesToReturn(300);
frequencyAnalyzer.setMinWordLength(4);
frequencyAnalyzer.setStopWords(loadStopWords());

final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/datarank.txt"));
final WordCloud wordCloud = new WordCloud(500, 312, CollisionMode.PIXEL_PERFECT);
wordCloud.setPadding(2);
wordCloud.setBackground(new PixelBoundryBackground(getInputStream("backgrounds/whale_small.png")));
wordCloud.setColorPalette(new ColorPalette(new Color(0x4055F1), new Color(0x408DF1), new Color(0x40AAF1), new Color(0x40C5F1), new Color(0x40D3F1), new Color(0xFFFFFF)));
wordCloud.setFontScalar(new LinearFontScalar(10, 40));
wordCloud.build(wordFrequencies);
wordCloud.writeToFile("output/whale_wordcloud_small.png");

Example to generate a circular Word Cloud.

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/my_text_file.txt"));

final WordCloud wordCloud = new WordCloud(600, 600, CollisionMode.PIXEL_PERFECT);
wordCloud.setPadding(2);
wordCloud.setBackground(new CircleBackground(300));
wordCloud.setColorPalette(new ColorPalette(new Color(0x4055F1), new Color(0x408DF1), new Color(0x40AAF1), new Color(0x40C5F1), new Color(0x40D3F1), new Color(0xFFFFFF)));
wordCloud.setFontScalar(new SqrtFontScalar(10, 40));
wordCloud.build(wordFrequencies);
wordCloud.writeToFile("output/datarank_wordcloud_circle_sqrt_font.png");

Example to generate a rectangle Word Cloud

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/my_text_file.txt"));

final WordCloud wordCloud = new WordCloud(600, 600, CollisionMode.RECTANGLE);
wordCloud.setPadding(0);
wordCloud.setBackground(new RectangleBackground(600, 600));
wordCloud.setColorPalette(buildRandomColorPallete(20));
wordCloud.setFontScalar(new LinearFontScalar(10, 40));
wordCloud.build(wordFrequencies);
wordCloud.writeToFile("output/wordcloud_rectangle.png");

Example of tokenizing chinese text into a circle

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
frequencyAnalyzer.setWordFrequencesToReturn(600);
frequencyAnalyzer.setMinWordLength(2);
frequencyAnalyzer.setWordTokenizer(new ChineseWordTokenizer());

final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/chinese_language.txt"));
final WordCloud wordCloud = new WordCloud(600, 600, CollisionMode.PIXEL_PERFECT);
wordCloud.setPadding(2);
wordCloud.setBackground(new CircleBackground(300));
wordCloud.setColorPalette(new ColorPalette(new Color(0xD5CFFA), new Color(0xBBB1FA), new Color(0x9A8CF5), new Color(0x806EF5)));
wordCloud.setFontScalar(new SqrtFontScalar(12, 45));
wordCloud.build(wordFrequencies);
wordCloud.writeToFile("output/chinese_language_circle.png");

Create a polarity word cloud to contrast two datasets

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
frequencyAnalyzer.setWordFrequencesToReturn(750);
frequencyAnalyzer.setMinWordLength(4);
frequencyAnalyzer.setStopWords(loadStopWords());

final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/new_york_positive.txt"));
final List<WordFrequency> wordFrequencies2 = frequencyAnalyzer.load(getInputStream("text/new_york_negative.txt"));

final PolarWordCloud wordCloud = new PolarWordCloud(600, 600, CollisionMode.PIXEL_PERFECT, PolarBlendMode.BLUR);
wordCloud.setPadding(2);
wordCloud.setBackground(new CircleBackground(300));
wordCloud.setFontScalar(new SqrtFontScalar(10, 40));
wordCloud.build(wordFrequencies, wordFrequencies2);
wordCloud.writeToFile("output/polar_newyork_circle_blur_sqrt_font.png");

Create a Layered Word Cloud from two images/two word sets

final FrequencyAnalyzer frequencyAnalyzer = new FrequencyAnalyzer();
frequencyAnalyzer.setWordFrequencesToReturn(300);
frequencyAnalyzer.setMinWordLength(5);
frequencyAnalyzer.setStopWords(loadStopWords());

final List<WordFrequency> wordFrequencies = frequencyAnalyzer.load(getInputStream("text/new_york_positive.txt"));
final List<WordFrequency> wordFrequencies2 = frequencyAnalyzer.load(getInputStream("text/new_york_negative.txt"));

final LayeredWordCloud layeredWordCloud = new LayeredWordCloud(2, 600, 386, CollisionMode.PIXEL_PERFECT);

layeredWordCloud.setPadding(0, 1);
layeredWordCloud.setPadding(1, 1);

layeredWordCloud.setFontOptions(0, new CloudFont("LICENSE PLATE", FontWeight.BOLD));
layeredWordCloud.setFontOptions(1, new CloudFont("Comic Sans MS", FontWeight.BOLD));

layeredWordCloud.setBackground(0, new PixelBoundryBackground(getInputStream("backgrounds/cloud_bg.bmp")));
layeredWordCloud.setBackground(1, new PixelBoundryBackground(getInputStream("backgrounds/cloud_fg.bmp")));

layeredWordCloud.setColorPalette(0, new ColorPalette(new Color(0xABEDFF), new Color(0x82E4FF), new Color(0x55D6FA)));
layeredWordCloud.setColorPalette(1, new ColorPalette(new Color(0xFFFFFF), new Color(0xDCDDDE), new Color(0xCCCCCC)));

layeredWordCloud.setFontScalar(0, new SqrtFontScalar(10, 40));
layeredWordCloud.setFontScalar(1, new SqrtFontScalar(10, 40));

layeredWordCloud.build(0, wordFrequencies);
layeredWordCloud.build(1, wordFrequencies2);
layeredWordCloud.writeToFile("output/layered_word_cloud.png");

Normalizers

Tokenizers are the code that splits a sentence/text into a list of words. Currently only two tokenizers are built into Kumo. To add your own just create a class that override the Tokenizer interface and call the FrequencyAnalyzer.setTokenizer() or FrequencyAnalyzer.addTokenizer().

Tokenizer
WhiteSpaceWordTokenizer
ChineseWordTokenizer

Filters

After tokenization, filters are applied to each word to determine whether or not should be omitted from the word list.

To add set the filter, call FrequencyAnalyzer.setFilter() or FrequencyAnalyzer.addFilter()

Tokenizer Description
UrlFilter A filter to remove words that are urls.
CompositeFilter A wrapper of a collection of filters.
StopWordFilter Internally used, the FrequencyAnalyzer makes this filter easy to use via FrequencyAnalyzer.setStopWords().
WordSizeFilter Internally used, the FrequencyAnalyzer makes this filter easy to use via FrequencyAnalyzer.setMinWordLength() and FrequencyAnalyzer.setMaxWordLength().

Normalizers

After word tokenization and filtering has occurred you can further transform each word via a normalizer. The default normalizer ia lowerCase•characterStripping*trimToEmpty(word), the normalizer is even named DefaultNormalizer

To add set the normalizer, call FrequencyAnalyzer.setNormalizer() or FrequencyAnalyzer.addNormalizer()

Normalizers Description
CharacterStrippingNormalizer Constructed with a Pattern, it will replace all matched occurrences with a configurable 'replaceWith' string. The default pattern is `\.
LowerCaseNormalizer Converts all text to lowercase.
UpperCaseNormalizer Converts all text to uppercase.
TrimToEmptyNormalizer Trims the text down to an empty string, even if null.
UpsideDownNormalizer Converts A-Z,a-z,0-9 character to an upside-down variant.
StringToHexNormalizer Converts each character to it's hex value and concatenates them.
DefaultNormalizer Combines the TrimToEmptyNormalizer, CharacterStrippingNormalizer, and LowerCaseNormalizer.